Колебания численности популяции связано


Характер колебаний численности насекомых. Основные теории динамики численности. Видовая специфичность реакций организма насекомых на комплекс факторов внешней среды при различной плотности популяций. Принципы математического-моделирования колебания численности популяций. Различные математические модели колебания численности популяций и возможность их использования для объяснения механизма колебаний. Идеалистические взгляды в области математического моделирования популяций и их критика.[...]

Изучение колебаний численности популяций короеда Dendroctonus pseudotsugae в природной и лабораторной обстановке привело Мак Мюллена и Аткинса (1961) к выводу, что у этого вида возникают конкурентные отношения при наличии больше 4—8 гнезд на 9,3 м2 коры дерева. В результате конкурентных отношений численность жуков в потомстве снижается.[...]

Отмеченные колебания численности и структуры популяции планктонных ракообразных характерны тем, что они не связаны ни с какими внешними колебательными процессами, так как по условиям проведенного кибернетического эксперимента и кормовая база, и давление хищников, и температура среды не изменялись во времени. Возникновение автоколебаний популяции связано исключительно с ухудшением условий существования популяции. Это, очевидно, как раз те колебания численности популяции, которые связаны с ускорением процесса эволюции (Молчанов, 1966; Шмальгаузен, 1968).[...]

У других видов колебания численности популяций носят правильный циклический характер (кривая 2). Хорошо знакомы примеры сезонных колебаний численности. Тучи комаров; поля, заросшие цветами; леса, полные птиц, — все это характерно для теплого времени года в средней полосе и сходит практически на нет зимой.[...]

Периодические колебания численности популяций совершаются обычно в течение одного сезона или нескольких лет. Циклические изменения с подъемом численности в среднем через 4 года зарегистрированы у животных, обитающих в тундре, — леммингов, полярной совы, песца. Сезонные колебания численности характерны и для многих насекомых, мышевидных грызунов, птиц, мелких водных организмов.[...]

Виленкин Б. Я. 1966. Колебания численности популяций животных. Наука», М.[...]

Ограничение возможных колебаний численности популяций имеет большое значение не только для их собственного процветания, но и для устойчивого существования сообществ. Успешное сожительство организмов разных видов возможно только при их определенных количественных соотношениях. Естественным отбором закреплены поэтому самые разнообразные заслоны на пути катастрофического увеличения численности популяций, регуляторные механизмы имеют множественный характер.[...]

Во временном отношении колебания численности популяции бывают непериодическими и периодическими. Последние можно разделить на колебания с периодом в несколько лет колебания и сезонные колебания. Непериодические флуктуации носят непредвиденный характер.[...]

Выявленное свойство модели популяции окуня в известной мере подтверждает соображения и выводы Т. Ф. Дементьевой (1953) о «значении решающего фактора в свете годовых и многолетних колебаний численности популяции». Действительно, если задать изменение 1Ук во времени по какому-то определенному закону, то численность популяции повторит эти изменения с известными искажениями.[...]

Ряд специалистов объясняют колебания численности популяции тем, что в условиях перенаселенности возникает стресс, который влияет на репродуктивный потенциал, устойчивость к заболеваниям и другим воздействиям.[...]

Современная теория динамики численности популяций рассматривает колебания численности популяции как авто-регулируемый процесс. Выделяют две принципиально разные стороны популяционной динамики: модификацию и регуляцию.[...]

Циклическая динамика обусловлена колебаниями численности популяций с чередованием подъемов и спадов через определенные интервалы от нескольких лет до десяти и более. О периодичности вспышек массового размножения животных писали многие ученые. Так, С. С. Четвериков (1905) на примере насекомых говорил о существовании «волн жизни» с «приливами жизни» и «отливами жизни».[...]

По мере увеличения значений Ь и (или) /? численность популяции сначала демонстрирует затухающие колебания, постепенно приводящие к равновесному состоянию, а затем к «устойчивым предельным циклам», в соответствии с которыми популяция колеблется около состояния равновесия, неоднократно проходя при этом через те же самые две, четыре или даже большее число точек. И наконец, при самых высоких значениях Ь и Я колебания численности популяции имеют полностью нерегулярный и хаотический характер.[...]

ФЛОТАТОР — см. в ст. Коагуляция. ФЛУКТУАЦИИ ЧИСЛЕННОСТИ ПОПУЛЯЦИИ [от лат. fluctuatio колебание] — колебания численности популяции, обусловленные гл. обр. внешними факторами.[...]

Существует ряд примеров, полученных на природных популяциях, в которых можно обнаружить регулярные колебания численности хищников и жертв. Колебания численности популяций зайца обсуждаются экологами, начиная с двадцатых годов нашего века, а охотники обнаружили их еще за 100 лет до того. Так например, американский заяц-беляк (Lepus americanus) в бореальных лесах Северной Америки имеет «10-летний цикл численности» (хотя на самом деле его продолжительность варьирует от 8 до 11 лет; рис.[...]

Как и в тундре, здесь выражены сезонная периодичность и колебания численности популяций. Классический пример — цикла численности зайца и рыси (фиг. 88). В хвойных лесах также наблюдаются вспышки численности жуков-короедов и листогрызущих насекомых, особенно если древостой состоит из одного или двух доминирующих видов. Описание биома хвойного леса Северной Америки можно найти у Шелфорда и Олсона (1935).[...]

Ранее вы познакомились с эволюцией биосферы. Вам уже знакомы колебания численности популяций. Экосистема также подвержена изменениям. Одни изменения экосистемы непродолжительны и легко восстанавливаются, другие — существенны и продолжительны.[...]

Конечно, не меньшее влияние температура оказывает на пределы колебаний численности популяций в различных областях географического ареала отдельных видов насекомых и, следовательно, в значительной мере определяет ареалы вредности видов, имеющих хозяйственное или медицинское значение, а также ареалы полезности их паразитов и хищников. Насекомое того или иного вида не может быть массовым при температурах, далеких от оптимальных для его жизненности.[...]

При переходе к прибрежному промыслу красной средней и высокой интенсивности в колебаниях численности популяции колюшки почти совсем исчезает четырехлетняя составляющая и доминирующее положение начинает занимать составляющая с периодом Т=8 лет (рис. 7.16). Характерно, что спектральная функция в этом случае по форме напоминает спектральную функцию численности молоди красной (рис. 7.15) при такой же интенсивности прибрежного промысла. Это не удивительно, так как коэффициент корреляции между численностями этих популяций в данных условиях довольно высок. Циклические колебания численности молоди красной, наступающие во время перелова и имеющие четырехлетний период, не находят соответствующего аналога заметной интенсивности в спектральном разложении колебаний численности популяции колюшки.[...]

При больших интенсивностях рыболовства, связанных со значительными выловами, их колебания во времени довольно быстро затухают, например ири сети (5+), /’=0.9 (рис. 4. 4). Уменьшение колебаний уловов обусловлено уменьшением колебаний численности популяции, что видно на фазовой диаграмме (рис. 4. 5). Для сети (5+) процесс уменьшения колебаний численности продолжается до самых больших интенсивностей рыболовства, для сети же (2+) аналогичный процесс имеет место лишь до =0.4.[...]

Модель свидетельствует о том, что внутривидовая конкуренция может привести к самым различным колебаниям численности популяции. — Запаздывание по времени, предшествующее изменению численности.[...]

Очевидно, хотя и относительно, закономерно изменяющиеся факторы среды могут определять такие же колебания численности популяций. Действительно, мы можем в ряде случаев установить изменения в важнейших кормовых ресурсах лесных охотничьих животных. Это — колебания в урожайности лесных семян (ели, сибирского кедра, сосны, дуба и т. д.), ягод (черники, брусники и др.), а также основных животных кормов хищных пушных зверей (лесных полевок, леммингов, зайцев-беляков, белок и т. д.).[...]

Длительная, жестокая засуха — это бедствие, приводящее к тяжелым экологическим последствиям: деградации природных экосистем, резким колебаниям численности популяций животных, гибели растений, катастрофическому неурожаю, а в определенных экономических условиях — к массовой гибели людей от голода. Подобные засухи в России были в 1891, 1911, 1921, 1946 и 1972 гг.[...]

Занимаясь особями, экология выясняет, как на них влияет абиотическая и биотическая среда и как они сами воздействуют на среду. Занимаясь популяциями, она решает вопросы о наличии или отсутствии отдельных видов, о степени их обилия или редкости, об устойчивых изменениях и колебаниях численности популяций. При исследовании на популяционном уровне возможны два методологических подхода. Первый исходит из основных свойств отдельных особей, а уж затем изыскивает формы сочетания этих свойств, предопределяющие особенности популяции в целом. Второй обращается к свойствам популяции непосредственно, пытаясь увязать эти свойства с параметрами среды. Оба подхода небесполезны, и обоими мы воспользуемся в дальнейшем. Кстати, те же два подхода целесообразны и при изучении сообществ. Экология сообществ рассматривает состав, или структуру, сообществ, а также прохождение через сообщества энергии, биогенных элементов и других веществ (т. е. то, что называется функционированием сообщества). Пытаться понять все эти закономерности и процессы можно, рассматривая слагающие сообщество популяции; но можно и непосредственно изучать сообщества, концентрируя внимание на таких их характеристиках, как видовое разнообразие, скорость образования биомассы и т. д. Опять-таки пригодны оба подхода. Экология занимает центральное место среди других биологических дисциплин, поэтому неудивительно, что со многими из них она перекрывается — прежде всего с генетикой, эволюционным учением, этологией и физиологией. Но все же основное в экологии— это те процессы, которые сказываются на распространении и численности организмов, т. е. процессы отрождения особей, их гибели и миграции.[...]

О стабилизирующем влиянии неоднородности уже говорили при описании эксперимента Хаффейкера на клещах (разд. 9.9). Важно также отметить, что в популяциях зайца-беляка, для которого характерны «циклы» (с. 476—477), никогда не наблюдаются циклические колебания в условиях, представляющих собой мозаику из пригодных и непригодных для обитания участков. В гористых районах и в районах, разделенных сельскохозяйственными угодьями, существуют сравнительно устойчивые и не испытывающие циклических колебаний численности популяции зайца-беляка (Keith, 1983). Вместе с тем эффекты агрегирующих ответов, по-видимому, легче понять, рассматривая свойства и природу факторов биологического контроля.[...]

Согласно традиционным экологическим представлениям сложность (большее число видов и/или больше взаимодействий) подразумевает стабильность (более слабые колебания численности популяции, устойчивость или способность к восстановлению после пертурбаций). Однако эмпирические данные неоднозначны [6, 7, 105]. Если сложность действительно придает экосистеме стабильность, то следовало бы ожидать, что в тропиках популяции более устойчивы, чем в умеренных или полярных областях; однако между тропическими и умеренными областями нет четких различий в этом отношении. Изучение популяций насекомых показало, например, что в этих двух зонах их разногодичная изменчивость в среднем одинакова [284]. Известны также примеры стабильности простых природных систем и нестабильности сложных. Проведенные недавно исследования нескольких пресноводных экосистем показали, что в стабильных и на первый взгляд более сложных средах они на самом деле менее устойчивы к нарушениям, чем в менее стабильных и более простых [285].[...]

Согласно традиционным экологическим представлениям сложность (большее число видов и/или больше взаимодействий) подразумевает стабильность (более слабые колебания численности популяции, устойчивость или способность к восстановлению после пертурбаций). Однако эмпирические данные неоднозначны [6, 7, 105]. Если сложность действительно придает экосистеме стабильность, то следовало бы ожидать, что в тропиках популяции более устойчивы, чем в умеренных или полярных областях; однако между тропическими и умеренными областями нет четких различий в этом отношении. Изучение популяций насекомых показало, например, что в этих двух зонах их разногодичная изменчивость в среднем одинакова [284]. Известны также примеры стабильности простых природных систем и нестабильности сложных. Проведенные недавно исследования нескольких пресноводных экосистем показали, что в стабильных и на первый взгляд более сложных средах они на самом деле менее устойчивы к нарушениям, чем в менее стабильных и более простых [285].[...]

Введение довольно интенсивного промысла (/’=0.70 и /’=0.75 при рф=0.20) не сводит устойчивый цикл к одному стационарному состоянию, как это имело место во второй модели настоящего раздела. Наоборот, колебания численности популяции становятся более резкими, их период сокращается до 4 -5 лет при /’=0.70 и до 2- 3 лет при Р=0.75. Средняя численность популяции существенно снижается в результате воздействия рыболовства по сравнению с рассмотренным выше случаем необлавливаемой популяции.[...]

Из формул (10.26) и (10.30) следует, что хотя, как и в детерминистском случае, среднее значение N(t) экспоненциально возрастает, экспоненциально возрастают и отклонения от среднего значения. Таким образом, с течением времени колебания численности популяции становятся все более резкими. В этом отражается то обстоятельство, что детерминистская система не имеет стационарного состояния, более того, при определенных соотношениях между а и а вероятность ее вымирания приближается к единице.[...]

ЗАКОН ПИРАМИДЫ ЭНЕРГИЙ (ПРАВИЛО ДЕСЯТИ ПРОЦЕНТОВ): с одного трофического уровня экологической пирамиды переходит на другой ее уровень в среднем не более 10/0 энергии. ЗАКОН СИСТЕМЫ «ХИЩНИК-ЖЕРТВА» (В. ВОЛЬТЕРРА): процесс уничтожения жертвы хищником нередко приводит к периодическим колебаниям численности популяций обоих видов, зависящих только от скорости роста популяций хищника и жертвы и от исходного соотношения их численности.[...]

Вычитаемое в правой части уравнения, содержащее ЛГ2, позволяет предсказать момент выхода системы из состояния равновесия в случаях, когда время запаздывания относительно велико по сравнению с временем релаксации (1/г) системы. В итоге при увеличении в системе времени запаздывания вместо асимптотического приближения к состоянию равновесия происходит колебание численности организмов относительно теоретической ¿»-образной кривой. В случаях, когда пищевые ресурсы ограничены, популяция не достигает устойчивого равновесия, ибо численность одного поколения зависит от численности другого, что отражается на скорости репродукции и приводит к хищничеству и каннибализму. Колебания численности популяции, для которой характерны большие значения г, малое время воспроизводства т колебания численности популяции связано и несложный регулирующий механизм, могут быть весьма значительными.[...]

Для выявления ведущих факторов среды и их значения в жизни того или иного вида насекомых в экспериментальных условиях создается обстановка, при которой изучаемый фактор варьирует, а все остальные факторы по возможности одинаковы (например, воспитание -насекомых в политермостатах, камеры которых имеют различную температуру, но одинаковую влажность, а воспитываемые насекомые получают одинаковую пищу). Значение многих отдельных факторов определяется также анализом периодических колебаний численности популяций в природе в зависимости от колебаний метеорологических условий, от численности и состава их естественных врагов (паразитов, хищников, возбудителей болезней), или путем параллельного изучения видов в различных географических пунктах (экологогеографический метод).[...]

В. Вольтерры, как уже упомянуто ранее, предложенные ими независимо друг от друга в 1925 и 1926—1931 гг. На эти уравнения буквально набросились прикладные математики экологического направления. Они породили огромную литературу. Еще в начале 30-х гг. выраженная ими закономерность была экспериментально проверена Г. Ф. Гаузе (1934), получившего опытные доказательства справедливости уравнения А. Лотки — В. Вольтерры. Последний сформулировал три закона системы «хищник — жертва». Закон периодического цикла: процесс уничтожения жертвы хищником нередко приводит к периодическим колебаниям численности популяций обоих видов, зависящим только от скорости роста популяций хищника и жертвы и от исходного соотношения их численностей. Закон сохранения средних величин, средняя численность популяции для каждого вида постоянна независимо от начального уровня при условии, что специфические скорости увеличения численности популяций, а также эффективность хищничества постоянны. Закон нарушения средних величин: при аналогичном нарушении популяций хищника и «ертвы (например, рыб в ходе промысла пропорционально их численности) средняя численность популяции жертвы растет, а популяции хищника падает.[...]

В настоящее время работа по созданию систем жизнеобеспечения идет по двум направлениям — механическому и биологическому. Сложная механическая система хеморегенерации, обеспечивающая регенерацию газов и воды (но не пищи) и удаление отходов, уже почти действует. Это достаточно надежная система, способная поддерживать жизнь довольно долгое время. Для очень длительных полетов система химической регенерации становится слишком «тяжелой»; так как ее металлические детали велики по объему и массе, она требует больших количеств энергии, а также запасов пищи и некоторых газов, которые надо пополнять. Дополнительные осложнения возникают в связи с тем, что для удаления СОг нужна высокая температура; кроме того, при длительных полетах в системе постепенно накапливаются токсичные вещества (например, окись углерода), о чем не приходится беспокоиться при непродолжительных полетах. В очень длительных космических полетах, когда пополнение запасов и хеморегенерация невозможны, придется прибегнуть к другой альтернативе — к биологической экосистеме, обеспечивающей частичную или полную регенерацию. В таких системах, основанных на биологических процессах, в настоящее время пытаются использовать в качестве «продуцентов» хемосинтезирующие бактерии, мелкие фотосинтезирующие организмы, такие, «ак Chlorella, или некоторые высшие водные растения, поскольку, как указывалось выше, инженерные соображения исключают, по-видимому, использование для этих целей более крупных организмов. Иными словами, при выборе биологического «газообменника» вновь возникает проблема «масса или эффективность». Эта эффективность, однако, достигается ценой долговечности отдельных особей (еще одно проявление упоминавшейся ранее противоположности соотношений Р/В и В/P). Чем короче жизнь отдельной особи, тем труднее предупредить или смягчить колебания численности популяции и генофонда. Один килограмм Хемосинте-зинтезирующих бактерий может удалить из атмосферы космического корабля больше СОг, чем один килограмм водорослей Chlorella, но рост бактерий регулировать труднее. В свою очередь Chlorella, если говорить о массе, более эффективна в качестве газообменника, чем высшие растения, но при этом ее труднее регулировать.[...]


Источник: http://ru-ecology.info/term/4996/



Рекомендуем посмотреть ещё:


Закрыть ... [X]

БОЛЬШАЯ НАУЧНАЯ БИБЛИОТЕКА : Колебание численности в популяциях Прическа для школы мастер класс

Колебания численности популяции связано Колебания численности популяции связано Колебания численности популяции связано Колебания численности популяции связано Колебания численности популяции связано Колебания численности популяции связано Колебания численности популяции связано Колебания численности популяции связано Колебания численности популяции связано